![y'=\dfrac{x+1}{y+1} +y^2 y'=\dfrac{x+1}{y+1} +y^2](https://tex.z-dn.net/?f=y%27%3D%5Cdfrac%7Bx%2B1%7D%7By%2B1%7D%20%2By%5E2)
Метод Эйлера.
Решениями являются следующие пары:
![(0.3;\ y_1),\ (0.4;\ y_2),\ (0.5;\ y_3),\ (0.6;\ y_4),\\(0.7;\ y_5),\ (0.8;\ y_6),\ (0.9;\ y_7),\ (1.0;\ y_8) (0.3;\ y_1),\ (0.4;\ y_2),\ (0.5;\ y_3),\ (0.6;\ y_4),\\(0.7;\ y_5),\ (0.8;\ y_6),\ (0.9;\ y_7),\ (1.0;\ y_8)](https://tex.z-dn.net/?f=%280.3%3B%5C%20y_1%29%2C%5C%20%280.4%3B%5C%20y_2%29%2C%5C%20%280.5%3B%5C%20y_3%29%2C%5C%20%280.6%3B%5C%20y_4%29%2C%5C%5C%280.7%3B%5C%20y_5%29%2C%5C%20%280.8%3B%5C%20y_6%29%2C%5C%20%280.9%3B%5C%20y_7%29%2C%5C%20%281.0%3B%5C%20y_8%29)
Причем по условию
.
Для вычисления
используется формула:
, где ![f(x;\ y)=\dfrac{x+1}{y+1} +y^2 f(x;\ y)=\dfrac{x+1}{y+1} +y^2](https://tex.z-dn.net/?f=f%28x%3B%5C%20y%29%3D%5Cdfrac%7Bx%2B1%7D%7By%2B1%7D%20%2By%5E2)
![y_2=y_1+h\cdot f(x_1;\ y_1)=1.5+0.1\cdot\left(\dfrac{0.3+1}{1.5+1} +1.5^2\right)=1.777 y_2=y_1+h\cdot f(x_1;\ y_1)=1.5+0.1\cdot\left(\dfrac{0.3+1}{1.5+1} +1.5^2\right)=1.777](https://tex.z-dn.net/?f=y_2%3Dy_1%2Bh%5Ccdot%20f%28x_1%3B%5C%20y_1%29%3D1.5%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.3%2B1%7D%7B1.5%2B1%7D%20%2B1.5%5E2%5Cright%29%3D1.777)
В дальнейших вычислениях результат будем округлять до тысячных:
![y_3=y_2+h\cdot f(x_2;\ y_2)=1.777+0.1\cdot\left(\dfrac{0.4+1}{1.777+1} +1.777^2\right)\approx2.143 y_3=y_2+h\cdot f(x_2;\ y_2)=1.777+0.1\cdot\left(\dfrac{0.4+1}{1.777+1} +1.777^2\right)\approx2.143](https://tex.z-dn.net/?f=y_3%3Dy_2%2Bh%5Ccdot%20f%28x_2%3B%5C%20y_2%29%3D1.777%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.4%2B1%7D%7B1.777%2B1%7D%20%2B1.777%5E2%5Cright%29%5Capprox2.143)
![y_4=y_3+h\cdot f(x_3;\ y_3)=2.143+0.1\cdot\left(\dfrac{0.5+1}{2.143+1} +2.143^2\right)\approx2.65 y_4=y_3+h\cdot f(x_3;\ y_3)=2.143+0.1\cdot\left(\dfrac{0.5+1}{2.143+1} +2.143^2\right)\approx2.65](https://tex.z-dn.net/?f=y_4%3Dy_3%2Bh%5Ccdot%20f%28x_3%3B%5C%20y_3%29%3D2.143%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.5%2B1%7D%7B2.143%2B1%7D%20%2B2.143%5E2%5Cright%29%5Capprox2.65)
![y_5=y_4+h\cdot f(x_4;\ y_4)=2.65+0.1\cdot\left(\dfrac{0.6+1}{2.65+1} +2.65^2\right)\approx3.396 y_5=y_4+h\cdot f(x_4;\ y_4)=2.65+0.1\cdot\left(\dfrac{0.6+1}{2.65+1} +2.65^2\right)\approx3.396](https://tex.z-dn.net/?f=y_5%3Dy_4%2Bh%5Ccdot%20f%28x_4%3B%5C%20y_4%29%3D2.65%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.6%2B1%7D%7B2.65%2B1%7D%20%2B2.65%5E2%5Cright%29%5Capprox3.396)
![y_6=y_5+h\cdot f(x_5;\ y_5)=3.396+0.1\cdot\left(\dfrac{0.7+1}{3.396+1} +3.396^2\right)\approx4.588 y_6=y_5+h\cdot f(x_5;\ y_5)=3.396+0.1\cdot\left(\dfrac{0.7+1}{3.396+1} +3.396^2\right)\approx4.588](https://tex.z-dn.net/?f=y_6%3Dy_5%2Bh%5Ccdot%20f%28x_5%3B%5C%20y_5%29%3D3.396%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.7%2B1%7D%7B3.396%2B1%7D%20%2B3.396%5E2%5Cright%29%5Capprox4.588)
![y_7=y_6+h\cdot f(x_6;\ y_6)=4.588+0.1\cdot\left(\dfrac{0.8+1}{4.588+1} +4.588^2\right)\approx6.725 y_7=y_6+h\cdot f(x_6;\ y_6)=4.588+0.1\cdot\left(\dfrac{0.8+1}{4.588+1} +4.588^2\right)\approx6.725](https://tex.z-dn.net/?f=y_7%3Dy_6%2Bh%5Ccdot%20f%28x_6%3B%5C%20y_6%29%3D4.588%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.8%2B1%7D%7B4.588%2B1%7D%20%2B4.588%5E2%5Cright%29%5Capprox6.725)
![y_8=y_7+h\cdot f(x_7;\ y_7)=6.725+0.1\cdot\left(\dfrac{0.9+1}{6.725+1} +6.725^2\right)\approx11.272 y_8=y_7+h\cdot f(x_7;\ y_7)=6.725+0.1\cdot\left(\dfrac{0.9+1}{6.725+1} +6.725^2\right)\approx11.272](https://tex.z-dn.net/?f=y_8%3Dy_7%2Bh%5Ccdot%20f%28x_7%3B%5C%20y_7%29%3D6.725%2B0.1%5Ccdot%5Cleft%28%5Cdfrac%7B0.9%2B1%7D%7B6.725%2B1%7D%20%2B6.725%5E2%5Cright%29%5Capprox11.272)
Итак, приближенные решения:
![(0.3;\ 1.5),\ (0.4;\ 1.777),\ (0.5;\ 2.173),\ (0.6;\ 2.65),\\(0.7;\ 3.396),\ (0.8;\ 4.588),\ (0.9;\ 6.725),\ (1.0;\ 11.272) (0.3;\ 1.5),\ (0.4;\ 1.777),\ (0.5;\ 2.173),\ (0.6;\ 2.65),\\(0.7;\ 3.396),\ (0.8;\ 4.588),\ (0.9;\ 6.725),\ (1.0;\ 11.272)](https://tex.z-dn.net/?f=%280.3%3B%5C%201.5%29%2C%5C%20%280.4%3B%5C%201.777%29%2C%5C%20%280.5%3B%5C%202.173%29%2C%5C%20%280.6%3B%5C%202.65%29%2C%5C%5C%280.7%3B%5C%203.396%29%2C%5C%20%280.8%3B%5C%204.588%29%2C%5C%20%280.9%3B%5C%206.725%29%2C%5C%20%281.0%3B%5C%2011.272%29)
Метод Рунге-Кутта:
Аналогично, последующие значения вычисляются через предыдущие, только по другой формуле:
, где:
![k_1=f(x_i;\ y_i) k_1=f(x_i;\ y_i)](https://tex.z-dn.net/?f=k_1%3Df%28x_i%3B%5C%20y_i%29)
![k_2=f\left(x_i+\dfrac{h}{2} ;\ y_i+\dfrac{hk_1}{2}\right) k_2=f\left(x_i+\dfrac{h}{2} ;\ y_i+\dfrac{hk_1}{2}\right)](https://tex.z-dn.net/?f=k_2%3Df%5Cleft%28x_i%2B%5Cdfrac%7Bh%7D%7B2%7D%20%3B%5C%20y_i%2B%5Cdfrac%7Bhk_1%7D%7B2%7D%5Cright%29)
![k_3=f\left(x_i+\dfrac{h}{2} ;\ y_i+\dfrac{hk_2}{2}\right) k_3=f\left(x_i+\dfrac{h}{2} ;\ y_i+\dfrac{hk_2}{2}\right)](https://tex.z-dn.net/?f=k_3%3Df%5Cleft%28x_i%2B%5Cdfrac%7Bh%7D%7B2%7D%20%3B%5C%20y_i%2B%5Cdfrac%7Bhk_2%7D%7B2%7D%5Cright%29)
![k_4=f\left(x_i+h ;\ y_i+hk_3\right) k_4=f\left(x_i+h ;\ y_i+hk_3\right)](https://tex.z-dn.net/?f=k_4%3Df%5Cleft%28x_i%2Bh%20%3B%5C%20y_i%2Bhk_3%5Cright%29)
Рассчитаем
:
![k_2=f\left(x_1+\dfrac{h}{2} ;\ y_1+\dfrac{hk_1}{2}\right)=f\left(0.3+\dfrac{0.1}{2} ;\ 1.5+\dfrac{0.1\cdot2.77}{2}\right)=\\=f\left(0.35 ;\ 1.6385\right)=\dfrac{0.35+1}{1.6385+1} +1.6385^2\approx3.196 k_2=f\left(x_1+\dfrac{h}{2} ;\ y_1+\dfrac{hk_1}{2}\right)=f\left(0.3+\dfrac{0.1}{2} ;\ 1.5+\dfrac{0.1\cdot2.77}{2}\right)=\\=f\left(0.35 ;\ 1.6385\right)=\dfrac{0.35+1}{1.6385+1} +1.6385^2\approx3.196](https://tex.z-dn.net/?f=k_2%3Df%5Cleft%28x_1%2B%5Cdfrac%7Bh%7D%7B2%7D%20%3B%5C%20y_1%2B%5Cdfrac%7Bhk_1%7D%7B2%7D%5Cright%29%3Df%5Cleft%280.3%2B%5Cdfrac%7B0.1%7D%7B2%7D%20%3B%5C%201.5%2B%5Cdfrac%7B0.1%5Ccdot2.77%7D%7B2%7D%5Cright%29%3D%5C%5C%3Df%5Cleft%280.35%20%3B%5C%201.6385%5Cright%29%3D%5Cdfrac%7B0.35%2B1%7D%7B1.6385%2B1%7D%20%2B1.6385%5E2%5Capprox3.196)
![k_3=f\left(x_1+\dfrac{h}{2} ;\ y_1+\dfrac{hk_2}{2}\right)=f\left(0.3+\dfrac{0.1}{2} ;\ 1.5+\dfrac{0.1\cdot3.196}{2}\right)=\\=f\left(0.35 ;\ 1.6598\right)=\dfrac{0.35+1}{1.6598+1} +1.6598^2\approx3.262 k_3=f\left(x_1+\dfrac{h}{2} ;\ y_1+\dfrac{hk_2}{2}\right)=f\left(0.3+\dfrac{0.1}{2} ;\ 1.5+\dfrac{0.1\cdot3.196}{2}\right)=\\=f\left(0.35 ;\ 1.6598\right)=\dfrac{0.35+1}{1.6598+1} +1.6598^2\approx3.262](https://tex.z-dn.net/?f=k_3%3Df%5Cleft%28x_1%2B%5Cdfrac%7Bh%7D%7B2%7D%20%3B%5C%20y_1%2B%5Cdfrac%7Bhk_2%7D%7B2%7D%5Cright%29%3Df%5Cleft%280.3%2B%5Cdfrac%7B0.1%7D%7B2%7D%20%3B%5C%201.5%2B%5Cdfrac%7B0.1%5Ccdot3.196%7D%7B2%7D%5Cright%29%3D%5C%5C%3Df%5Cleft%280.35%20%3B%5C%201.6598%5Cright%29%3D%5Cdfrac%7B0.35%2B1%7D%7B1.6598%2B1%7D%20%2B1.6598%5E2%5Capprox3.262)
![k_4=f\left(x_1+h ;\ y_1+hk_3\right)=f\left(0.3+0.1 ;\ 1.5+0.1\cdot3.262\right)=\\=f\left(0.4 ;\ 1.8262\right)=\dfrac{0.4+1}{1.8262+1} +1.8262^2\approx3.83 k_4=f\left(x_1+h ;\ y_1+hk_3\right)=f\left(0.3+0.1 ;\ 1.5+0.1\cdot3.262\right)=\\=f\left(0.4 ;\ 1.8262\right)=\dfrac{0.4+1}{1.8262+1} +1.8262^2\approx3.83](https://tex.z-dn.net/?f=k_4%3Df%5Cleft%28x_1%2Bh%20%3B%5C%20y_1%2Bhk_3%5Cright%29%3Df%5Cleft%280.3%2B0.1%20%3B%5C%201.5%2B0.1%5Ccdot3.262%5Cright%29%3D%5C%5C%3Df%5Cleft%280.4%20%3B%5C%201.8262%5Cright%29%3D%5Cdfrac%7B0.4%2B1%7D%7B1.8262%2B1%7D%20%2B1.8262%5E2%5Capprox3.83)
![y_2=y_1+\dfrac{h}{6}\cdot (k_1+2k_2+2k_3+k_4)=\\=1.5+\dfrac{0.1}{6}\cdot (2.77+2\cdot3.196+2\cdot3.262+3.83)\approx1.825 y_2=y_1+\dfrac{h}{6}\cdot (k_1+2k_2+2k_3+k_4)=\\=1.5+\dfrac{0.1}{6}\cdot (2.77+2\cdot3.196+2\cdot3.262+3.83)\approx1.825](https://tex.z-dn.net/?f=y_2%3Dy_1%2B%5Cdfrac%7Bh%7D%7B6%7D%5Ccdot%20%28k_1%2B2k_2%2B2k_3%2Bk_4%29%3D%5C%5C%3D1.5%2B%5Cdfrac%7B0.1%7D%7B6%7D%5Ccdot%20%282.77%2B2%5Ccdot3.196%2B2%5Ccdot3.262%2B3.83%29%5Capprox1.825)
Результаты остальных расчетов показаны в таблице.
Приближенные решения:
![(0.3;\ 1.5),\ (0.4;\ 1.825),\ (0.5;\ 2.292),\ (0.6;\ 3.031),\\(0.7;\ 4.403),\ (0.8;\ 7.9),\ (0.9;\ 32.13),\ (1.0;\ 3601296) (0.3;\ 1.5),\ (0.4;\ 1.825),\ (0.5;\ 2.292),\ (0.6;\ 3.031),\\(0.7;\ 4.403),\ (0.8;\ 7.9),\ (0.9;\ 32.13),\ (1.0;\ 3601296)](https://tex.z-dn.net/?f=%280.3%3B%5C%201.5%29%2C%5C%20%280.4%3B%5C%201.825%29%2C%5C%20%280.5%3B%5C%202.292%29%2C%5C%20%280.6%3B%5C%203.031%29%2C%5C%5C%280.7%3B%5C%204.403%29%2C%5C%20%280.8%3B%5C%207.9%29%2C%5C%20%280.9%3B%5C%2032.13%29%2C%5C%20%281.0%3B%5C%203601296%29)