Объяснение:
1.Продолжите предложение. А) Центральный угол-это угол , вершина ,которого в центре окружности , а стороны пересекают окружность
Б) Угол между касательной и хордой равен равен половине дуги, которую стягивает данная хорда.
2.Постройте окружность, обозначьте её центр точкой О и постройте вписанный центральный углы, опирающиеся на дугу АВ.
(в приложении)
3.А) Постройте центральный угол 120 градусов и дополните рисунок вписанным углом, опирающимся на эту дугу и найдите градусную меру вписанного угла.
( в приложении)
Б) Постройте острый вписанный в окружность угол и найдите градусную меру центрального угла, опирающегося на эту дугу.
( в приложении)
4.Дана окружность с центром в точке О, АN-касательная, СВ и СА- хорды. Известно, что дуга АС равна 100 градусам, дуга АВ относится к дуге ВС как 2 к3. Дуги АВ и ВС меньше полуокружности.
Найдите: а) углы САN, АОВ, АСВ, СВО; б)дуги АВ и СВ.
Решение.
а)∠САN=1/2*100°=50° по правилу п.1Б;
б)Пусть одна часть дуги х°, тогда из условия ∪АВ:∪ВС=2:3 ,
получаем :∪АВ=2х ,∪ВС=3х.
Вся окружность 360°⇒2х+3х+100=360 или 5х=260 или х=52°.
Значит ∪АВ=104° ,∪ВС=156°.
а)∠АОВ=∪АВ , как центральный⇒ ∠АОВ=104°,
∠АСВ=1/2*∪АВ , как вписанный ⇒∠АСВ=52°,
∠СВО=?. Рассмотрим ΔСВО-равнобедренный, т.к. ОВ=ОС как радиусы.∠ВОС=∪ВС=156°. Значит ∠ВСО=∠СВО=(180°-156°):2=12°