В окружности с центром в точке О проведена хорда АВ, длина которой равна длине радиуса. Перпендикулярно этой хорде проведен радиус ОК. Радиус ОК и хорда В пересекаются в точке Е. Длина отрезка АЕ равна 6,2 см. Нужно а) постройте чертеж по условию задачи; б) найдите длину хорды АВ;
в) вычислите длину радиуса;
г) найдите периметр треугольника АОВ.
Объяснение:
Δ АОВ-равносторонний ,т.к. АВ=ОВ=ОА.
ОК∩АВ=Е ⇒ ОЕ-медиана ΔОАВ, как высота в равнобедренном треугольнике ⇒ АЕ=ВЕ=6,2 см ⇒ АВ=6,2*2=12,4 см.
ОА=ОВ=ОК=R=12,4 см.
Р(тр)=3*12,4=37,2 (см)