0}\, |+\Big|\, \underbrace{sin1,4-\dfrac{1}{2}}_{>0}\, \Big|+|\, \underbrace {sin2-1}_{" alt="\sqrt{sin^21,4-2\cdot sin1,4\cdot sin2+sin^2\, 2}+\sqrt{\frac{1}{4}-sin1,4+sin^2\, 1,4}+\\\\+\sqrt{1-2\cdot sin2+sin^2\, 2}=\\\\\\=\sqrt{(sin1,4-sin2)^2}+\sqrt{(sin1,4-\frac{1}{2})^2}+\sqrt{(sin2-1)^2}=\\\\\\=|\, \underbrace {sin1,4-sin2}_{>0}\, |+\Big|\, \underbrace{sin1,4-\dfrac{1}{2}}_{>0}\, \Big|+|\, \underbrace {sin2-1}_{" align="absmiddle" class="latex-formula">