Вычислить площадь плоской фигуры, ограниченной линиями y=x^2,y=3x. ​

+510 голосов
3.2m просмотров

Вычислить площадь плоской фигуры, ограниченной линиями y=x^2,y=3x. ​


Геометрия (22 баллов) | 3.2m просмотров
Дан 1 ответ
+85 голосов
Правильный ответ

Решение:

Приравняем данные функции и решим полученное уравнение:

x^2=3x \\ \\ x^2-3x=0 \\ \\ x\cdot(x-3)=0 \\ \\ \left[\begin{array} xx=0 \\ x-3=0\end{array}\right \Rightarrow \left[\begin{array} xx=0 \\ x=3\end{array}\right

Теперь найдём интеграл по формуле Ньютона-Лейбница:

\int\limits^3_0 ({3x-x^2)} \, dx=\Big(\dfrac{3x^2}{2}-\dfrac{x^3}{3}\Big) \Big|^3_0= \\ \\ \dfrac{27}{2}-9-0=\dfrac{27-18}{2}=\dfrac{9}{2}=4,5

Ответ: \boxed{\boxed{S=4,5}}

(22.4k баллов)