100 БАЛЛОВ!!! РЕШИТЕ ПЕРВЫЕ 2 ЗАДАНИЯ) ЗАРАНЕЕ СПАСИБО

+886 голосов
5.1m просмотров

100 БАЛЛОВ!!! РЕШИТЕ ПЕРВЫЕ 2 ЗАДАНИЯ) ЗАРАНЕЕ СПАСИБО


Алгебра (193 баллов) | 5.1m просмотров
Дан 1 ответ
+154 голосов

Необходимо было решить 2 первые задачи из документа, но я решил ещё и параметр, который мне понравился.

12. Необходимо решить уравнение

\displaystyle sin \ 2x = \sqrt{2} \cdot cos\bigg(\frac{7\pi}{2}-x\bigg)

Формула двойного угла sin \ 2x = 2 \ sinx \cdot cosx

А также  \displaystyle \frac{7\pi}{2}-2\pi=\frac{3\pi}{2}, как известно, добавление или вычитание целого периода из аргумента тригонометрической функции ничего не меняет.

Так как в выражении в скобках присутствует половинный аргумент при \pi, то косинус поменяется на синус, знак будет отрицательным, потому что если считать, что x находится в первой координатной четверти, то при вычислении выражения в скобках значение будет в третьей четверти, где обе функции отрицательны.

\displaystyle cos\bigg (\frac{7\pi}{2}-x \bigg)=cos\bigg (\frac{3\pi}{2}-x \bigg)=-sinx

Получаем уравнение 2sinxcosx=-\sqrt{2}sinx, которое поделим на \sqrt{2}

\displaystyle \sqrt{2}sinx\cdot cosx+sinx=0 \Rightarrow sinx(\sqrt{2} cosx+1)=0 \Rightarrow \\ \Rightarrow \left [ {{sinx=0} \atop {cosx=-\frac{1}{\sqrt{2}} }} \right. \Rightarrow \left [ {{x=\pi k, \ k \in \mathbb{Z}} \atop {x=\pi \pm \frac{\pi}{4} +2\pi n, \ n \in \mathbb{Z}}} \right.

Первая часть готова, осталось проанализировать каждую серию решений на принадлежность промежутку \displaystyle \bigg[-\pi; \frac{3\pi}{2}\bigg]

\displaystyle -\pi \leq \pi k \leq \frac{3\pi}{2} \bigg| : \pi \Rightarrow -1 \leq k \leq \frac{3}{2}, \ k \in \mathbb{Z}

Здесь подойдут k=-1; \ k=0: x=\pi \cdot (-1)= -\pi; \ x=\pi \cdot 0 = 0

Анализируем 2 оставшиеся серии:

\displaystyle -\pi\leq \pi \pm \frac{\pi}{4}+2\pi n\leq \frac{3\pi}{2} \bigg|:2\pi \Rightarrow -\frac{1}{2}\leq \frac{1}{2}\pm \frac{1}{8}+n\leq \frac{3}{4} \Rightarrow \\ \Rightarrow -1\leq \pm\frac{1}{8}+n\leq \frac{1}{4} , \ n \in \mathbb{Z}

Здесь уже необходимо рассматривать отдельно.

Первое с "+" возьмем: \displaystyle -1 \leq \frac{1}{8}+n \leq \frac{1}{4} \Rightarrow -1\frac{1}{8}\leq n \leq \frac{1}{4}-\frac{1}{8} , \ n \in \mathbb{Z} \Rightarrow n=-1; \ n=0 \\ x=\pi+\frac{\pi}{4}-2\pi=-\frac{3\pi}{4}; \ x=\pi + \frac{\pi}{4} +0=\frac{5\pi}{4}

В последней серии решений та же логика, просто исходно дробь будет со знаком "-", значит, в обе части двойного неравенства пойдет с "+"

\displaystyle -\frac{7}{8} \leq n \leq \frac{1}{4} + \frac{1}{8} \Rightarrow n=0 \\ x=\pi - \frac{\pi}{4}+2\pi \cdot 0 = \frac{3\pi}{4}

Теперь можно записывать ответ:

\displaystyle a) \ 2\pi k; \ \frac{3\pi}{4}+2\pi n; \ \frac{5\pi}{4}+2\pi n; \\ b) -\pi; -\frac{3\pi}{4}; 0; \frac{3\pi}{4}; \pi; \frac{5\pi}{4}

Переходим к 13. Это неравенство.

Сразу видно, что 25^x-10\cdot 5^x+26 можно заменить на переменную, и тогда неравенство станет куда проще.

\displaystyle 25^x-10\cdot 5^x+26=t \Rightarrow t-2+\frac{1}{t} \geq 0 \Rightarrow \frac{t^2-2t+1}{t} \geq 0 \Rightarrow \frac{(t-1)^2}{t}\geq 0

Если знаменатель больше нуля, то и неравенство будет больше 0. Особый случай - когда числитель равен 1, но image0" alt="1>0" align="absmiddle" class="latex-formula">, поэтому решением этого неравенство является image0" alt="t>0" align="absmiddle" class="latex-formula">

Возвращаемся к замене и решаем относительно x:

image0; \ 5^x=p \Rightarrow p^2-10p+26>0 \Rightarrow \\ \Rightarrow p^2-10p+25+1>0 \Rightarrow \forall p\in \mathbb{R}: \ (p-5)^2+1>0" alt="(5^x)^2-10\cdot 5^x+26>0; \ 5^x=p \Rightarrow p^2-10p+26>0 \Rightarrow \\ \Rightarrow p^2-10p+25+1>0 \Rightarrow \forall p\in \mathbb{R}: \ (p-5)^2+1>0" align="absmiddle" class="latex-formula">

Тогда получается, что и для любого x неравенство выполняется.

Ответ: x\in \mathbb{R}

Решение задачи с параметром прикрепляю отдельным документом, так как мне не хватило ограничения на 5000 символов, к сожалению (

(5.0k баллов)