АВС - прямоугольный треугольник. ∠А=90°, D принадлежит стороне АС. BD=ВС=ВС/√3. Площадь равна 24√3 см². Найдите длину стороны АВ.
Ответ: 4√3
Объяснение:
В равнобедренном по условию ∆ ВСD проведем высоту DM, она же медиана треугольника BDC и делит ВС на СМ=ВМ=ВС/2
Kосинус угла С=ВС/2):ВС.√3=(√3)/2 - это косинус 30°.
Тогда ВС=2АВ ( свойство)
По одной из формул площади треугольника
S (АВС)=AB•BC•sin∠ABC:2
Сумма острых углов прямоугольного треугольника 90°
Угол АВС=90°-30°=60°, его синус=(√3)/2
По условию S(ABC)=AB•2AB•(√3)/2=24√3 =>
АВ²=48
АВ=√48=4√3