Ответ:
0\ ,\ to\ \ \ k_{1,2}=\dfrac{(n+2)\pm |n-2|}{2}\\\\y_{obshee}=C_1\cdot e^{\frac{(n+2)-|n-2|}{2}\, x}+C_2\cdot e^{\frac{(n+2)+|n-2|}{2}\, x}\\\\Esli\ D=0\ ,\ to\ \ n=2\ \ \to \ \ \ k^2-4k+4=0\ \ ,\ \ (k-2)^2=0\ \ ,\ \ k=2\ \to \\\\y_{obshee}=e^{2x}\cdot (C_1+C_2x)" alt="2)\ \ y''-(n+2)\, y'+2n\cdot y=0\\\\k^2-(n+2)\, k+2n=0\\\\D=(n+2)^2-8n=n^2-4n+4=(n-2)^2\geq 0\\\\Esli\ D>0\ ,\ to\ \ \ k_{1,2}=\dfrac{(n+2)\pm |n-2|}{2}\\\\y_{obshee}=C_1\cdot e^{\frac{(n+2)-|n-2|}{2}\, x}+C_2\cdot e^{\frac{(n+2)+|n-2|}{2}\, x}\\\\Esli\ D=0\ ,\ to\ \ n=2\ \ \to \ \ \ k^2-4k+4=0\ \ ,\ \ (k-2)^2=0\ \ ,\ \ k=2\ \to \\\\y_{obshee}=e^{2x}\cdot (C_1+C_2x)" align="absmiddle" class="latex-formula">