Внутри правильного треугольника со стороной выбрана произвольная точка . Чему равна...

+361 голосов
6.0m просмотров

Внутри правильного треугольника со стороной выбрана произвольная точка . Чему равна сумма расстояний от этой точки до сторон треугольника ?​


Геометрия | 6.0m просмотров
Дан 1 ответ
+87 голосов

Внутри правильного треугольника со стороной  √3  выбрана произвольная точка . Чему равна сумма расстояний от этой точки до сторон треугольника ?​

Объяснение:

Пусть точка Р-произвольная. Опустим на стороны правильного ΔАВС перпендикуляры . Обозначим их х,у,z ( кстати,  получили педальный треугольник, если соединить основания перпендикуляров).

S(ABC)=S( PAB)+S(PBC)+S(PAC).

               S(ABC)=S(равн. тр)=\frac{a^{2}*\sqrt{3} }{4} =\frac{3\sqrt{3} }{4} ,

               S( PAB)=1/2*a*h=1/2*√3*x,

               S(PBC)=1/2*a*h=1/2*√3*y,

                S(PAC)=1/2*a*h=1/2*√3*z.

\frac{3\sqrt{3} }{4}=1/2*√3*x+1/2*√3*y+1/2*√3*z.

\frac{3\sqrt{3} }{4}=1/2√3(x+y+z)

x+y+z=1,5

(4.8k баллов)