Ответ:
НОД(528, 1404)=12
НОК(528,1404)=61776
Объяснение:
первый способ:
Разложим 528 и 1404 в произведение простых множителей
528=2*2*2*2*3*11
1404=2*2*3*3*3*13
отсюда
НОД(528, 1404)=2*2*3=12
(каждый простой множитель в наибольшей степени общей для двух разложений, =есть в каждом из разложений как множитель)
НОК(528,1404)=2*2*2*2*3*3*3*11*13=61776
(каждый простой множитель в наибольшей возможной степени общей при выборе из двух разложений)
второй способ:
по алгоритму Евклида
1404=528*2+348
528=348*1+180
348=180*1+168
180=168*1+12
168=12*14
значит НОД(528, 1404)=12,
а НОК(528, 1404)=528*1404:НОД(528, 1404)=528*1404:12=61776