B правильной четырёхугольной пирамиде mabcd через середины сторон ab и ad параллельно...

0 голосов
55 просмотров

B правильной четырёхугольной пирамиде mabcd через середины сторон ab и ad параллельно боковому ребру am проведена плоскость.Найдите площадь сечения, если сторона основания равна a, a боковое ребро b.


Геометрия (15 баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Площадь этого пятиугольника очень просто сосчитать напрямую - он состоит из прямоугольника со сторонами b/2 и a√2/2, и треугольника с основанием a√2/2 h = 3b/4 - b/2 = b/4;
Гораздо интереснее решить эту задачу вот как :) - рассмотреть сначала проекцию сечения на основание. 
Прежде, чем считать площадь проекции, я "накрою" квадрат основания сеткой, соединив между собой все середины сторон, и проведя диагонали. Основание "разрежется" на 16 равных равнобедренных прямоугольных треугольников, каждый площадью s1 = a^2/16.
проекция сечения на основание "накроет" 4 таких треугольника в зоне треугольника ABD. В зоне треугольника CBD (то есть с другой стороны от диагонали BD) проекция "накрывает" треугольник, который диагональю AC делится на два треугольника с площадями s1/2 (обоснуйте!), то есть общая площадь проекции сечения 5a^2/16;
Ясно, что косинус угла между сечением и основанием равен 
a√2/2b, поскольку сечение параллельно боковой стороне. 
Отсюда S = (5a^2/16)/(a√2/2b); ну и упростите :)...


(69.9k баллов)
0

Вообще то я таких задач не делаю обычно - это детская задачка, просто меня позабавило вычисление площади проекции. Если что-то не устраивает, или не понятно - смело можно ставить нарушение, мне это все равно.