А)7(1-cos²x)+8cosx-8=0
7-7cos²x+8cosx-8=0
7cos²x-8cosx+1=0
D=64-28=36
cosx=(8+6)/14=1; cosx=(8-6)/14=1/7
x1=2πk,k∈Z
x2=arccos1/7+2πk,k∈Z;
x3=-arccos1/7+2πk,k∈Z;
б)-π/2≤2πk≤π/2
-1/4≤k≤1/4
k=0
x1=2π0=0
-π/2≤arccos1/7+2πk≤π/2;
-π/2-arccos1/7≤2πk≤π/2-arccos1/7
-1/4-(arccos1/7)/2π≤k≤1/4-(arccos1/7)/2π
k=0
x2=arccos1/7+2π0=arccos1/7;
-π/2≤-arccos1/7+2πk≤π/2;
-π/2+arccos1/7≤2πk≤π/2+arccos1/7
-1/4+(arccos1/7)/2π≤k≤1/4+(arccos1/7)/2π
k=0
x3=-arccos1/7+2π0=-arccos1/7
Ответ:а)x1=2πk,k∈Z; x2=arccos1/7+2πk,k∈Z; x3=-arccos1/7+2πk,k∈Z;
б)x1=0;x2=arccos1/7;x2=-arccos1/7