Треугольники ABC и ABD равнобедренные с основанием AB=18,лежат в различных плоскостях,...

0 голосов
276 просмотров

Треугольники ABC и ABD равнобедренные с основанием AB=18,лежат в различных плоскостях, углы при основания соответственно равны 30 и 60. Найти угол между плоскостями этих треугольников, если DC= корень из 189


Геометрия (39 баллов) | 276 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Для начала проведем высоты этих треугольников(они совпадут) CO и OD, так как основание и углы нам известны найдем эти высоты:
CO=tg30*AO(это половина основания, которое разделила высота)=√3/3*9=3√3;
OD=tg60*AO=9√3;
Далее идем по теореме косинусов(нам известны все стороны образовавшегося треугольника COD):квадрат стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними;
CD^2=CO^2+OD^2-2*CO*OD*cosx, откуда имеем:
cosx=(CO^2+OD^2-CD^2)/(2*CO*OD)= 1/2; 
Следовательно искомый угол равен 60 градусам.

(248 баллов)
0

:)