Боковая поверхность пирамиды состоит из 4 равнобедренных треугольников, площади которых попарно равны
Найдём высоту треугольника с основанием 6 см , по теореме Пифагора
h=√(13²-3³)=√160см , а площадь этого треугольника 1/2·6·√160=3√160=12√10 см² и таких треугольников боковая поверхность содержит 2, значит их площадь 24√10 см²
Найдём высоту треугольника с основанием 8, так же по теореме Пифагора
H=√(13²-4²)=√153=3√17 см, его площадь равна 1/2·8·3√17=12√17см² и таких треугольника тоже 2 и их площадь равна 24√17 см²
Sбок=24√10+24√17=24(√10+√17) см²
Ответ:24(√10+√17) см²