Х и у;
\frac{y^2-2y}{2} = \frac{6}{5};\\
=\frac{5y^2-10y-12}{10}=0;\\
5y^2-10y-12=0;
D=100+240=340;\\
x_{1}= \frac{10- \sqrt{340} }{10};=>y_{1}=\frac{10+ \sqrt{340} }{10};\\
x_{2}= \frac{10+\sqrt{340} }{10};=>y_{2}=\frac{10- \sqrt{340} }{10};\\" alt=" \left \{ {{x+y=2} \atop { \frac{1}{x}+\frac{1}{y} =- \frac{5}{6} }} \right. \\
x=2-y;\\
\frac{1}{2-y}+ \frac{1}{y}=- \frac{5}{5};\\
\frac{y+2-y}{y(2-y)} = -\frac{5}{6}=> \frac{y^2-2y}{2} = \frac{6}{5};\\
=\frac{5y^2-10y-12}{10}=0;\\
5y^2-10y-12=0;
D=100+240=340;\\
x_{1}= \frac{10- \sqrt{340} }{10};=>y_{1}=\frac{10+ \sqrt{340} }{10};\\
x_{2}= \frac{10+\sqrt{340} }{10};=>y_{2}=\frac{10- \sqrt{340} }{10};\\" align="absmiddle" class="latex-formula">