а) 2cos2x-3-8cosx=2(2cos^2(x)-1)-3-8cosx=4cos^2(x)-8cosx-5
4cos^2(x)-8cosx-5 заменим cosx=а
4а^2-8а-5=0
а=2,5 а=-0,5
1. cosx=-0.5 х=arccos(-0.5) x=120
2. cosx=2.5 косинус колеблется от - 1 до 1, поэтому данное решение нам не подходит.
Ответ: х=2.09
б)
2cos2x-5-8sinx=2(1-2sin^(x))-5-8sinx=2-4sin^2(x)-5-8sinx=3+4sin^2(x)+8sinx
заменим sinx=a
4а^2+8а+3=0
а=-0.5
a= -1.5 - не подходит так как sinx(-1;1)
sinx=-0.5
x=-0.52