На школьной спартакиаде проводится несколько квалификационных забегов на 100 м, из которых в финал выходит ровно половина от числа всех участников. Перед вами результаты всех спортсменов. Какой результат позволяет пройти в финал? 15,5; 16,8; 21,8; 18,4; 16,2; 32,3; 19,9; 15,5; 14,7; 19,8; 20,5; 15,4.Здесь для ответа на вопрос нужно вычислить медиану: Me= 17,6. Спортсменов, которые имеют результат выше найденного, будет как раз половина от числа всех участников. А вот результат выше среднего арифметического, которое равно здесь г = 18,9, еще не позволяет рассчитывать на выход в финал; в списке есть спортсмен с результатом 18,4, который не попадает в финал. Мода этого ряда равна Мо = 15,5 и дает слишком завышенную оценку для «сред него результата».Посмотрим теперь более внимательно на некоторые интересные свойства среднего арифметического, моды и медианы, вытекающие из их определений. Среднее арифметическое числового ряда является его наиболее естественным «центром». Если нарисовать все члены ряда на числовой прямой, то среднее арифметическое будет их центром масс. Точнее, представим себе, что в каждой из точек xvx2, ..., ха на числовой оси находятся грузы одинаковой массы. Если теперь«подвесить» числовую ось в точке х, то вся система будет находиться в равновесии. Вот так, например, это будет выглядеть для числового ряда из последнего примера 4 :Правда, и в этом случае ряд, как уже говорилось, может быть полимодальным. Особенностью моды является еще и то, что ее можно использовать не только в числовых рядах. Если, например, опросить большую группу учеников, какой школьный предмет им нравится больше всего, то модой этого ряда ответов окажется тот предмет, который будут называть чаще остальных. Это одна из причин, по которой мода широко используется при изучении спроса и проведении других социологических исследований. Например, при решении вопросов, в пачки какого веса фасовать масло, какие открывать авиарейсы и т.п. предварительно изучается спрос и выявляется мода — наиболее часто встречающийся заказ. И даже выборы президента с точки зрения статистики — не более чем определение моды...Достоинством медианы является ее большая по сравнению со средним арифметическим «устойчивость к ошибкам». Представим себе, что в таблицу результатов из примера 4 вкралась досадная оплошность: при записи одного из чисел мы пропустили десятичную запятую и вместо 21,8 написали 218. Тогда среднее арифметическое результатов возрастет с 18,9 секунд до 35,25 секунд, а медиана будет по-прежнему 17,6 секунд!