Найдите меньшую диагональ ромба, стороны которого равны 35 ,а острый угол равен 60...

0 голосов
53 просмотров

Найдите меньшую диагональ ромба, стороны которого равны 35 ,а острый угол равен 60 градусов


Геометрия (44 баллов) | 53 просмотров
Дан 1 ответ
0 голосов

По свойству острого угла прямоугольного треугольника найдем половину одной из диагоналей из которой потом найдем и другую диагональ.
Так как у ромба углы делятся диагоналями то острые углы в образовавшихся прямоугольных треугольниках будут равны 30 градусов. А по свойству прямоугольно треугольника катет лежащий напротив угла 30 градусов равен половине гипотенузы. Гипотенуза у нас сторона ромба.
Найдем этот катет 1/2 35 = 17.5  первый катет и соответственно одна из полу диагоналей.
17.5*2 = 35 см будет полная диагональ, одну нашли.
Найдем вторую через значение первого катета
По теореме пифагора
35^2-17.5^2=918.75 под корнем
это полу диагональ, найдем целиком диагональ
918.75 под корнем * 2 = 2 под корнем 918.75
Какая же диагональ будет наименьшей? тут и так понятно но можно посчитать возведя числа в квадрат
35^2=1225
2 под корнем 918.75 все в квадрате равно = 4*918.75 = 3675.
Значит наименьшая диагональ равна 35 см.

(5.2k баллов)