Имелось два слитка меди. Процент содержания меди с первом слитке ** 40% меньше, чем во...

0 голосов
441 просмотров

Имелось два слитка меди. Процент содержания меди с первом слитке на 40% меньше, чем во втором. После того как оба слитка сплавили ю, получился слиток, содержащий 36% меди. Найдите процентное содержание меди в каждом слитке, если в первом было 6 кг меди, а во втором - 12 кг. С решением, пожалуйста!


Алгебра (395 баллов) | 441 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть  х - процентное содержание меди в 1-ом сплаве, тогда х+40 - процентное содержание меди во 2-ом сплаве.
В первом сплаве меди было 6 кг., а во втором 12 кг. следовательно 1% массы это М1=6:х и М2=12:(х+40). Так ка каждый сплав 100%, то масса будит М1=6*100:х и М2=12*100:(х+40) Новый сплав содержит меди то же количество, которое было до сплавления в двух слитках т.е. 6+12=18 кг. Это по условию задачи составляет 36% нового сплава, поэтому масса нового сплава 18:36*100=50кг.
Масса нового сплава состоит из масс двух старых 
50=М1+М2=600:х+1200:(х+40); (12:х)+24*(х+4)
Решая полученное уравнение находим х1=20; х2=-24, так как х больше 0, то х=20
Следовательно в первоначальном сплаве было 20% и 20+40=60 % меди.
Ответ 20% и 60%

(243 баллов)