Центральный угол развертки боковой поверхности конуса равен 90 градусов. Вычислите объем...

0 голосов
124 просмотров

Центральный угол развертки боковой поверхности конуса равен 90 градусов. Вычислите объем конуса, если его образующая равна 6 см.


Геометрия (14 баллов) | 124 просмотров
Дан 1 ответ
0 голосов

Там я высоту провел, высота тоже 3 корень из 3...........................


image
(817 баллов)
0

можно подробнее?

0

в условии задачи написано что угол центральный 90 градусов центральный угол это угол при вершине. указали. дальше, образующая 6, а у конуса их 2, каждый из которых 6 см. Осевым сечением является равнобедренный прямоугольный треугольник с катетами 6. По Пифагору можно найти гипотенузу, или ,как правило, если треугольник прямоугольный равнобедренный то стороны будут 6,6, и 6 корень из 2......дальше спускаем высоту....... продолжение..........

0

а мы знаем, что высота опущенная из вершины равнобедренного треугольника является и высотой, и медианой и биссектриссой. значит оно делит сторону 6 корень из 3 на 2 равные части каждый из которых 3 корень из 2....А потом опять по пифагору находим высоту , или как правило, медиана опущенная на основание прямоугольного треугольника равна одной из части , то есть все 3 части равны 3 корень из 2.....а дальше по формуле находим объем конуса