Решите срочно прошуу

0 голосов
22 просмотров

Решите срочно прошуу


image

Алгебра | 22 просмотров
0

перезагрузи страницу если не видно

Дано ответов: 2
0 голосов
Правильный ответ

Ответ смотри во вложении:

(18.9k баллов)
0

-1/2 входит в ваш ответ, но оно не является решением системы

0 голосов
image=\frac{1}{x+2}\\\\ 21x^2+39x-6=0\\ 7x^2+13x-2=0\\ D=13^2-4*7*-2=225\\ x=\frac{-13+15}{14}=\frac{1}{7}\\ x=\frac{-13-15}{14}=-2 (7x-1)(x+2)<0\\ x \ \in \ (-2;\frac{1}{7})\\\\ \frac{1}{x}+\frac{1}{x+1} \geq \frac{1}{x+2}\\ \frac{2x+1}{x(x+1)} \geq \frac{1}{x+2}\\ \frac{(2x+1)(x+2)}{x(x+1)(x+2)} \geq \frac{x(x+1)}{x(x+1)(x+2)}\\ (2x+1)(x+2) \geq x(x+1)\\ 2x^2+5x+2 \geq x^2+x\\ x^2+4x+2 \geq 0\\ D=16-4*1*2=8\\ x=\frac{-4+\sqrt{8}}{2}=-2+\sqrt{2}\\ " alt=" 21x^2+39x-6<0\\ \frac{1}{x}+\frac{1}{x+1}>=\frac{1}{x+2}\\\\ 21x^2+39x-6=0\\ 7x^2+13x-2=0\\ D=13^2-4*7*-2=225\\ x=\frac{-13+15}{14}=\frac{1}{7}\\ x=\frac{-13-15}{14}=-2 (7x-1)(x+2)<0\\ x \ \in \ (-2;\frac{1}{7})\\\\ \frac{1}{x}+\frac{1}{x+1} \geq \frac{1}{x+2}\\ \frac{2x+1}{x(x+1)} \geq \frac{1}{x+2}\\ \frac{(2x+1)(x+2)}{x(x+1)(x+2)} \geq \frac{x(x+1)}{x(x+1)(x+2)}\\ (2x+1)(x+2) \geq x(x+1)\\ 2x^2+5x+2 \geq x^2+x\\ x^2+4x+2 \geq 0\\ D=16-4*1*2=8\\ x=\frac{-4+\sqrt{8}}{2}=-2+\sqrt{2}\\ " align="absmiddle" class="latex-formula">
x=\frac{-4-\sqrt{8}}{2}=-2-\sqrt{2}\\
x \in [-\sqrt{2}-2;-2)\ \cup \ (-1;\sqrt{2}-2] \ \cup \ (0;\infty) с учетом ОДЗ 
 Объединяя    x\in (0;\frac{1}{7}) \ \cup \ 
(-1;\sqrt{2}-2]
(224k баллов)