
=\frac{1}{x+2}\\\\
21x^2+39x-6=0\\
7x^2+13x-2=0\\
D=13^2-4*7*-2=225\\
x=\frac{-13+15}{14}=\frac{1}{7}\\
x=\frac{-13-15}{14}=-2
(7x-1)(x+2)<0\\
x \ \in \ (-2;\frac{1}{7})\\\\
\frac{1}{x}+\frac{1}{x+1} \geq \frac{1}{x+2}\\
\frac{2x+1}{x(x+1)} \geq \frac{1}{x+2}\\
\frac{(2x+1)(x+2)}{x(x+1)(x+2)} \geq \frac{x(x+1)}{x(x+1)(x+2)}\\
(2x+1)(x+2) \geq x(x+1)\\
2x^2+5x+2 \geq x^2+x\\
x^2+4x+2 \geq 0\\
D=16-4*1*2=8\\
x=\frac{-4+\sqrt{8}}{2}=-2+\sqrt{2}\\
" alt="
21x^2+39x-6<0\\
\frac{1}{x}+\frac{1}{x+1}>=\frac{1}{x+2}\\\\
21x^2+39x-6=0\\
7x^2+13x-2=0\\
D=13^2-4*7*-2=225\\
x=\frac{-13+15}{14}=\frac{1}{7}\\
x=\frac{-13-15}{14}=-2
(7x-1)(x+2)<0\\
x \ \in \ (-2;\frac{1}{7})\\\\
\frac{1}{x}+\frac{1}{x+1} \geq \frac{1}{x+2}\\
\frac{2x+1}{x(x+1)} \geq \frac{1}{x+2}\\
\frac{(2x+1)(x+2)}{x(x+1)(x+2)} \geq \frac{x(x+1)}{x(x+1)(x+2)}\\
(2x+1)(x+2) \geq x(x+1)\\
2x^2+5x+2 \geq x^2+x\\
x^2+4x+2 \geq 0\\
D=16-4*1*2=8\\
x=\frac{-4+\sqrt{8}}{2}=-2+\sqrt{2}\\
" align="absmiddle" class="latex-formula">
![x=\frac{-4-\sqrt{8}}{2}=-2-\sqrt{2}\\
x \in [-\sqrt{2}-2;-2)\ \cup \ (-1;\sqrt{2}-2] \ \cup \ (0;\infty) x=\frac{-4-\sqrt{8}}{2}=-2-\sqrt{2}\\
x \in [-\sqrt{2}-2;-2)\ \cup \ (-1;\sqrt{2}-2] \ \cup \ (0;\infty)](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-4-%5Csqrt%7B8%7D%7D%7B2%7D%3D-2-%5Csqrt%7B2%7D%5C%5C%0Ax+%5Cin+%5B-%5Csqrt%7B2%7D-2%3B-2%29%5C+%5Ccup+%5C+%28-1%3B%5Csqrt%7B2%7D-2%5D+%5C+%5Ccup+%5C+%280%3B%5Cinfty%29)
с учетом ОДЗ
Объединяя