0\\\\
\frac{9t}{\sqrt{t^2+5}}-\frac{\sqrt{t^2+5}}{2} \geq \sqrt{6t}\\\\
18t-(t^2+5) \geq 2\sqrt{6t^3+30t}\\\\
-t^2+18t-5 \geq 2\sqrt{6t^3+30t} \\\\
(-t^2+18t-5)^2 -4(6t^3+30t) \geq 0 \\\\\
" alt="9(1+5^{1-2x})^{-\frac{1}{2}}-\frac{1}{2}(5^{2x}+5)^{\frac{1}{2}} \geq 6^{\frac{1}{2}}*5^{\frac{x}{2}}\\\\
\frac{9}{\sqrt{1+\frac{5}{5^{2x}}}} - \frac{\sqrt{5^{2x}+5}}{2} \geq \sqrt{ 6*5^x}\\\\
5^{1-2x} \neq -1\\\\
x\in(-\infty; + \infty)\\\\
5^x=t>0\\\\
\frac{9t}{\sqrt{t^2+5}}-\frac{\sqrt{t^2+5}}{2} \geq \sqrt{6t}\\\\
18t-(t^2+5) \geq 2\sqrt{6t^3+30t}\\\\
-t^2+18t-5 \geq 2\sqrt{6t^3+30t} \\\\
(-t^2+18t-5)^2 -4(6t^3+30t) \geq 0 \\\\\
" align="absmiddle" class="latex-formula">