В двух школах поселка было 1500 учащихся. Через год число учащихся первой школы...

0 голосов
178 просмотров

В двух школах поселка было 1500 учащихся. Через год число учащихся первой школы увеличилось на 10%, а второй – на 20%, и в результате общее число стало равным 1720. Сколько учащихся было в каждой школе первоначально?


Алгебра (15 баллов) | 178 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решение:
Обозначим за х- количество учеников в первой школе, а во второй за у учеников, тогда согласно условию задачи: х+у=1500
Через год при увеличении учеников в первой школе на 10%, то есть
х+10%/100%*х=х+0,1х=1,1х
во второй школе на 20%, то есть
х+20%/100%*х=х+0,2х=1,2х
И так как общее количество учеников через год составило, то уравнение примет вид:
1,1х+1,2х=1720
Мы имеем два уравнения:
х+у=1500
1,1х+1,2х=1720
Решим данную систему уравнений:
х=1500-у
1,1*(1500-у)+1,2*(1500-у)=1720
1650-1,1у+1800-1,2у=1720
-1.1у-1.2у=1720-1650-1800
-2,3у=-1730 умножим обе части уравнения на (-1)
2,3у=1730
у=752,17        ДУМАЮ,ЧТО ЗАДАНИЕ ВАМИ НЕПРАВИЛЬНО ПРЕДСТАВЛЕНО. ПОЭТОМУ СЧИТАЮ, ЧТО ЗАДАЧА НЕ РЕШЕНА

(148k баллов)
0

Вы допустили ошибку. Должно быть 1.2y т к речь идет о второй школе