Пусть а=7, b=6 - стороны параллелограмма, обозначим диагональ
d₁=x, тогда d₂=16-x
Применяем формулу: сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
2·а²+2·b²=d₁²+d₂²
2·7² + 2· 6²=х²+(16-х)²
решаем квадратное уравнение:
98+72=х²+256-32х+х²,
х²-16х+43=0,
D=b²-4ac=16²-4·43=256-172=84
x₁=8- √21 x₂=8+√21
если d₁=8-√21, тогда d₂=16-(8-√21)=8+√21
если d₁=8+√21, тогда d₂=16-(8+√21)=8-√21
Меньшая диагональ 8-√21, найдем косинус острого угла по теореме косинусов:
(8-√21)²=6²+7²-2·6·7·сosα
cosα=(36+49-64-21+16√21) / 84=4√21/21=4/√21
тогда sin α=√(1-(4/√21)²)=√(1-(16/21))=√(5/21)
h=6·sinα=6√(5/21)