Чому дорівнює відношення площі квадрата до площі вписаного в нього круга?

0 голосов
84 просмотров

Чому дорівнює відношення площі квадрата до площі вписаного в нього круга?


Геометрия (57 баллов) | 84 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть а-сторона квадрата, тогда радиус вписанного круга в квадрат r=a/2. Площадь квадрата Sкв=a². Площадь круга Sкр=пи*r²=пи*(a/2)²=пи*a²/4. Отношение Sкв/Sкр=a²:(пи*a²/4)=4/пи.

(101k баллов)