Найдём площадь треугольника по формуле Герона:
, здесь a,b,c - стороны треугольника, p - полупериметр треугольника (в нашем случае a=4, b=13, c=15, ).
Таким образом,
По формуле площади треугольника, , где a - сторона треугольника, h - проведённая к ней высота. Обозначим за h₁ высоту, проведённую к стороне a, за h₂ высоту, проведённую к стороне b и за h₃ высоту, проведённую к стороне c. Тогда 2S=ah₁=bh₂=ch₃. Так как в нашем случае ah₂>h₃. Значит, наибольшая высота - та, которая проведена к стороне, равной 4. Если сторона равна 4, а площадь равна 24, то из формулы площади треугольника легко найти высоту:
Таким образом, наибольшая высота треугольника равна 12.