Помогите решить 101 задачу.
Находим координаты точки M как полусумму координат точек А и В: M(-3,3\2). Затем, зная координаты С и М, находим длину СМ как корень из суммы квадратов разностей соответствующих координат. т.е. sqrt( (-3 -3)^2 + (3\2 - 4)^2) = sqrt(36 + 25\4) = sqrt((144 + 25)\4) = 13\2 Ответ: 6.5
СМ- медиана, значит, М - середина отрезка АВ, найдем координаты т.М Х точки М = (1+(-7)) \ 2 = -3, У точки М = (5+(-2)) \ 2 = 1.5 длина отрезка СМ= √( (-3-3)² + (1.5-4)² ) =√(42.25) = 6.5.⇒ длина медианы СМ = 6.5