Пока решала в блокноте. верное решение дали, но и это не будет лишним, надеюсь.
Для начала уточним, что если один угол ромба равен 60°. то второй равен 120°, а не 110°, т.к. сумма углов, прилегающих к одной стороне параллелограмма ( а ромб - параллелограмм), равна 180°.
Определение:
Две прямые в трехмерном пространстве называются скрещивающимися, если они не лежат в одной плоскости, не пересекаются, не параллельны и не совпадают, иначе они лежали бы в одной плоскости.
Поскольку m параллельна МР, она не параллельна NР и не лежит с ней в одной плоскости, т.к. МР и MN пересекаются.
Прямые m и NP - скрещивающиеся прямые.
Решение задачи по нахождению величины угла между скрещивающимися прямыми в принципе такое же, как при решении задачи по определению угла между пересекающимися прямыми.
То есть угол между скрещивающимися прямыми равен углу между пересекающимися прямыми, соответственно параллельными данным.
Проекция прямой m на плоскость ромба параллельна m и параллельна МР. Она пересекается со стороной робма MN под тем же углом, под каким пересекается с этой стороной диагональ МР.
Угол между проекцией m на плоскость ромба и его стороной NP равен половине тупого угла ромба, т.к. МР, как диагональ ромба, делит угол 120 градусов пополам. (Диагонали ромба - биссектрисы его углов).
Итак, прямые m и MN скрещивающиеся и угол между ними равен 60 градусов.