В трапеции ABCD основания BC и AD равны соответственно 16 см и 20 см. Диагональ AC,...

0 голосов
69 просмотров
В трапеции
ABCD основания BC и AD равны соответственно 16 см и 20 см. Диагональ AC, равная 22 см, пересекает диагональ BD в точке K. Найдите длину KC.

Геометрия (343 баллов) | 69 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Треугольники ВСК и DКА подобные (по 3 углам) пусть КС=х, тогда АК=22-х
Из подобия треугольников следует пропорция:
КС/AK=BC/AD⇒x/(22-x)=16/20=4/5⇒5x=88-4x⇒9x=88⇒x=88/9

0 голосов

1.тре-к АКД подобен тре-ку СКД,т.к. Угол ВКС равен углу АКД(как вертикальные),угол ДБС = углу БДА (как накрест лежащие при параллельных прямых БС и АД и секущей БД 2.т,к тре-ки подобны то АД/БС=АК/КС пусть КС = x,тогда АК = 22-x 3.составляем пропорцию 22-x/x=20/16,отсюда получаем по свойству пропорции что x=9,78(см) Ответ:9.78

(18 баллов)