0) \\ \\ x^{2} =1 \\ x^{2} \geq 1 \\ x \geq 1 \\ x \leq -1" alt=" x^{4} +16 x^{2} -17 \leq 0 \\ x^{2} =t \\ t^{2} +16t-17=0 \\ D=256+68=324 \\ \sqrt{D} =17 \\ t _{1} = \frac{-16-18}{2} = \frac{-34}{2} =-17(<0) \\ t _{2} = \frac{-16+18}{2} = \frac{2}{2} =1(>0) \\ \\ x^{2} =1 \\ x^{2} \geq 1 \\ x \geq 1 \\ x \leq -1" align="absmiddle" class="latex-formula">