1а. 1б. 1в. 1г. 1д. 1е. 1ж. 1з. 1и. 1к. 1л. 1м. 2а. 2б. 2в. <img src="https://tex.z-dn.net/?f=y%3D+%5Csqrt%5B4%5D%7B%288x%2B9%29+%5E%7B3%7D+%7D%2C+x_0%3D9%2C+%5C%5C%0Ay%27%3D+%5Cfrac%7B3%7D%7B4%5Csqrt%5B4%5D%7B8x%2B9%7D+%7D+%5Ccdot8%3D+%5Cfrac%7B3%7D%7B2%5Csqrt%5B4%5D%7B8x%2B9%7D+%7D%3B+%5C%5C%0Ay%27_%7Bx_0%7D%3D+%5Cfrac%7B3%7D%7B2%5Csqrt%5B4%5D%7B8%5Ccdot9%2B9%7D+%7D%3D%5Cfrac%7B3%7D%7B2%5Csqrt%5B4%5D%7B%288%2B1%29%5Ccdot9%7D+%7D%3D%5Cfrac%7B3%7D%7B2%5Csqrt%5B4%5D%7B9%5E2%7D+%7D%3D%5Cfrac%7B3%7D%7B2%5Csqrt%5B4%5D%7B3%5E4%7D+%7D%3D%5Cfrac%7B3%7D%7B2%5Ccdot3+%7D%3D%5Cfrac%7B1%7D%7B2%7D." id="TexFormula30" title="y= \sqrt[4]{(8x+9) ^{3} }, x_0=9, \\ y'= \frac{3}{4\sqrt[4]{8x+9} } \cdot8= \frac{3}{2\sqrt[4]{8x+9} }; \\ y'_{x_0}= \frac{3}{2\sqrt[4]{8\cdot9+9} }=\frac{3}{2\sqrt[4]{(8+1)\cdot9} }=\frac{3