Прямоугольный треугольник .
Пусть Х - радиус окружности.
А - 1й катет.
В - 2й катет
7Х=А+В
Если из центра окружности опустить перпендикуляры на катеты , то они разделят треугольник на 3 части
Площадь квадрата - Х в кварате.
Площадь первого треугольника - одна сторона равна радису Х, вторая А-Х. Т.е. плащадь Х*(А-Х)/2
Площадь второго треугольника - одна сторона равна радису Х, вторая В-Х. Т.е. плащадь Х*(В-Х)/2
Составляем уравнение:.
Площадь всего треугольника равна:Х в квадрате+Х(А-Х)/2+Х(В-Х)/2=56 раскрываем скобки, сокращаем и получается:
(А+В)Х=112А+В=7Х, т. е. 7Х*Х=112
Х в квадрате=16
Х равен 4.
Ответ: х=4.