ВН = DK как высоты ромба.
О - точка пересечения высот.
Диагонали ромба взаимно перпендикулярны.
Так как высоты треугольника пересекаются в одной точке, а в равнобедренном треугольнике ABD АМ - высота, то точка О лежит на АМ.
ΔDKB = ΔBHD по гипотенузе и катету (BD - общая гипотенуза, ВН = DK), значит ОВ = OD.
Тогда ОК : OD = ОК : ОВ = 1 : 2.
В прямоугольном треугольнике КОВ катет равен половине гипотенузы, значит ∠КВО = 30°.
ΔАВН: ∠АНВ = 90°, ⇒ ∠ВАН = 60°.
∠BAD = ∠BCD = 60°
∠ABC = ∠ADC = 180° - 60° = 120° так как сумма углов параллелограмма, прилежащих к одной стороне, равна 180°