Раскрываем модуль по определению и получаем 4 случая
1) 2х-у≥0 2-х≥0, тогда |2x-y|=2x-y |2-x|=2-x
2х-у+2(2-х)=0
2х-у+4-2х=0
у=4
2х-у≥0 ⇒2х≥4 ⇒х≥2
и
2-х≥0 ⇒х≤2 получаем, что х=2
х+у=4+2=6
2)2х-у<0 2-х<0 , тогда |2x-y|=-2x+y |2-x|=-2+x<br>-2x+y+2(-2+x)=0
-2x+y-4+2x=0
у=4
2х-у<0 ⇒2x<4 ⇒x<2<br>и ⇒Множества не пересекаются нет решений
2-х<0 ⇒ x>2
3)2х-у≥0 2-х<0, тогда |2x-y|=2x-y |2-x|=-2+x<br>2x-y+2(-2+x)=0
2x-y-4+2x=0
4х=у+4
(у+4)/2 -у≥0 ⇒у+4-2у≥0 ⇒-y≥-4 ⇒у≤4
и ⇒y∈(-2;4] и х = (у+4)/4 ⇒х∈(-0,5; 2]
2-х<0 ⇒ 2-у-4<0 ⇒-y<2 ⇒<u>y⇒-2
Сложим двойные неравенства
-2 -0,5
-2,5Ответ -2,54) 2х-у<0 2-х≥0 тогда |2x-y|=-2x+y |2-x|=2-x<br>-2x+y+2(2-x)=0
-2x+y+4-2x=0
4х=у+4
(у+4)/2 -у<0 ⇒у+4-2у<0 ⇒-y<-4 ⇒<u>у>4
и ⇒ множества не пересекаются
2-х≥0 ⇒ 2-у-4≥0 ⇒-y≥2 ⇒y≤-2
Ответ -2,5