![image](https://tex.z-dn.net/?f=sin%5Cfrac%7B4%5Cpi%7D%7B7%7D%3E0%2C%5C%3B+t.k.%5C%3B+%5Cfrac%7B4%5Cpi%7D%7B7%7D%3D%5Cfrac%7B4%5Ccdot+180%5E0%7D%7B7%7D%3D%5Cfrac%7B720%5E0%7D%7B7%7D%5Capprox+102%2C9%5E0%5Cin+2%5C%3B+chetvert%5C%5C%5C%5Ccos%28-%5Cfrac%7B5%5Cpi%7D%7B7%7D%29%3C0%2C%5C.+t.k.%5C%3B+%5Cfrac%7B-5%5Cpi%7D%7B7%7D%3D-%5Cfrac%7B900%5E0%7D%7B7%7D%5Capprox+-128%2C6%5E0%5Cin+3%5C%3B+chetverti%5C%5C%5C%5Csin%5Cfrac%7B9%5Cpi%7D%7B8%7D%3C0%2Ct.k.%5C%3B+%5Cfrac%7B9%5Cpi%7D%7B8%7D%3D%5Cfrac%7B1620%5E0%7D%7B8%7D%3D202%2C5%5E0%5Cin+3%5C%3B+chetverti%5C%5C%5C%5Csin%5Cfrac%7B-3%5Cpi%7D%7B8%7D%3C0%2Ct.k.%5C%3B+%5Cfrac%7B-3%5Cpi%7D%7B8%7D%3D%5Cfrac%7B-540%5E0%7D%7B8%7D%3D-67%2C5%5E0%5Cin+4%5C%3B+chetverti)
0,\; t.k.\; \frac{4\pi}{7}=\frac{4\cdot 180^0}{7}=\frac{720^0}{7}\approx 102,9^0\in 2\; chetvert\\\\cos(-\frac{5\pi}{7})<0,\. t.k.\; \frac{-5\pi}{7}=-\frac{900^0}{7}\approx -128,6^0\in 3\; chetverti\\\\sin\frac{9\pi}{8}<0,t.k.\; \frac{9\pi}{8}=\frac{1620^0}{8}=202,5^0\in 3\; chetverti\\\\sin\frac{-3\pi}{8}<0,t.k.\; \frac{-3\pi}{8}=\frac{-540^0}{8}=-67,5^0\in 4\; chetverti" alt="sin\frac{4\pi}{7}>0,\; t.k.\; \frac{4\pi}{7}=\frac{4\cdot 180^0}{7}=\frac{720^0}{7}\approx 102,9^0\in 2\; chetvert\\\\cos(-\frac{5\pi}{7})<0,\. t.k.\; \frac{-5\pi}{7}=-\frac{900^0}{7}\approx -128,6^0\in 3\; chetverti\\\\sin\frac{9\pi}{8}<0,t.k.\; \frac{9\pi}{8}=\frac{1620^0}{8}=202,5^0\in 3\; chetverti\\\\sin\frac{-3\pi}{8}<0,t.k.\; \frac{-3\pi}{8}=\frac{-540^0}{8}=-67,5^0\in 4\; chetverti" align="absmiddle" class="latex-formula">