Продолжив перпендикуляр, опущенный к диаметру, до его пересечения с окружностью по другую сторону диаметра, получим хорду, два отрезка которой равны по √21 каждый.
Диаметр окружности тоже хорда, только самая большая.
При пересечении двух хорд произведения их отрезков, которые получаются точкой пересечения, равны.
Пусть один отрезок диаметра будет х, тогда второй будет (d-x)
d=2r
Найдем диаметр. из площади круга.
S=πr²
r²=S:π
r²=25
r=√25=5
d=10
Произведение отрезков хорды равно
(√21)·(√21)=21 см
Произведение отрезков диаметра равно
х(10-х)см
И эти произведения равны.
10х - х²=21 Домножим всё на -1 и перенесем все в левую сторону уравнения.
х² -10х+21=0
Решив квадратное уравнение, получим два корня
х₁=7
х₂=3
Оба корня подходят.
Отрезки диаметра, на которые его делит перпендикуляр. равны 7см и 3 см.