Пусть дуги окружности относятся, как 1/5/4. пусть наименьшая дуга равна х. Тогда у нас есть дуги х, 5х, 4х. Сумма дуг в окр равна 360°. Значит х+5х+4х=360°; 10х=360°; х=36°. То есть треугольник делит окр на дуги 36°, 180°, 144°. Меньший угол треугольника опирается на меньшую дугу (то есть на дугу 36°) и равен 36°/2=18° Ответ: 18°