Раскрываем знак модуля по определению
1)если 2х²-4≥0, |2x²-4|=2x²-4
Уравнение принимает вид
2x²-4=3x-3
2x²-3x-1=0
D=9+8=17
x₁=(3-√17)/4
x₂=(3+√17)/4
Проверяем будет ли выполняться условие
2х²-4≥0⇔2(х²-2)≥0 х∈(-∞;-√2]U[√2;+∞)
Так как (3-√17)/4 <0, то сравним это число с -√2<br>Пусть
(3-√17)/4 > -√2
или
3 - √17 >- 4√2
3+4√2>√17 - верно
Значит х₁ не является корнем
Так как (3+√17)/4 >0, то сравним это число с √2
Пусть
(3+√17)/4 > √2
или
3 + √17 > 4√2
Возведём в квадрат
9+6√17+17>14·2
6√17>28-26 - верно
Значит х₂ является корнем уравнения и принадлежит промежутку [√2;+∞)
2) если2х²-4<0, то |2x²-4|=-2x²+4<br>-2х²+4=3х-3
или
2x²+3x-7=0
D=9+56=65
x₃=(-3-√65)/4
x₄=(-3+√65)/4
Проверяем выполняется ли условие
2х²-4<0<br>или
-√2 < x < √2
Так как х₃ < 0, то сравниваем х₃ с -√2
Пусть
(-3-√65)/4 > -√2
или
-3 - √65 > -4√2,
4√2> 3 + √65 - верно, значит х₃∉(-√2;√2) и не является корнем уравнения
Так как х₄ > 0, cравниваем х₄ с √2
Пусть
(-3+√65)/4 <√2<br>или
-3 + √65 < 4√2,
√65 < 4√2+ 3 - верно, значит х₄∈(-√2;√2) и является корнем уравнения
Ответ.
x=(3+√17)/4
x=(-3+√65)/4