В прямоугольном треугольнике АМD катет MD равен:
MD=a*tgα (так как tgα =MD/AD = MD/a).
В квадрате ABCD половина диагонали OD = a*√2/2.
Тогда в прямоугольном треугольнике OMD гипотенуза ОМ является искомым расстоянием от вершины М до прямой АС (так как плоскость ВМD перпендикулярна плоскости основания). По Пифагору МО = √(OD²+MD²) или МО = √[(a²+2a²*tg²α)/2] = a√[(1+2tg²α)/2].
Но 1+2tg²α = 1+2*Sin²α/Cos²α = (Cos²α + 2*Sin²α)/Cos²α = (Cos²α + Sin²α +Sin²α)/Cos²α = (1+Sin²α)/Cos²α.
Тогда МО = a√[(1+Sin²α)/Cos²α)/2] = a*√[2*(1+Sin²α)]/2*Cosα.
Площадь полной поверхности нашей пирамиды равна сумме площадей основания и боковых граней, причем площади граней MDA и MDC равны, также как и площади граней MВA и MВC. Итак,
Smabcd = Sabcd+2*Smda+2*Smba.
Sabcd = a² (площадь квадрата).
Грани MDA и MDC прямоугольные треугольники, так как Грани MВA и MВC прямоугольные треугольники, так как В прямоугольном треугольнике MDA гипотенуза МА = a/Cosα.
Smda = (1/2)*MD*AD = (1/2)*a*tgα*a = (1/2)*a²*tgα.
Smba = 1/2)*MA*AB = (1/2)*(a/Cosα)*a = (1/2)*a²/Cosα.
Тогда площадь полной поверхности пирамиды MABCD равна:
Smabcd = a²+a²tgα+a²/Cosα =a²(1 + tgα + 1/Cosα) = a²(Cosα+Sinα+1)/Cosα.