Стороны параллелограмма равны 4 см. и 5 см. Острый угол 60 градусов. Найдите его диагонали

0 голосов
183 просмотров

Стороны параллелограмма равны 4 см. и 5 см. Острый угол 60 градусов. Найдите его диагонали


Геометрия | 183 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть в параллелограмме ABCD AB=CD=4, AD=BC=5, угол A равен 60 градусам. Рассмотрим треугольник ABD. Нам нужно найти величину диагонали BD, тогда как нам известны две другие стороны и угол между ними. Воспользуемся теоремой косинусов: BD²=AB²+AD²-2*AB*AD*cos(60)=4²+5²-2*4*5*1/2=16+25-20=21 ⇒ BD=√21.

Аналогично, в треугольнике ABC AC²=AB²+BC²-2*AB*BC*cos(120)=4²+5²-2*4*5*(-1/2)=16+25+20=61 ⇒ AC=√61

Таким образом, диагонали параллелограмма равны √21 и √61.

(47.5k баллов)