1) Отношение сторон в треугольнике (?:24:25) указывает на то, что треугольник прямоугольный, из Пифагоровых троек.
Действительно, АС²=АВ²+ВС² ( проверьте).
Радиус описанной вокруг прямоугольного треугольника окружности равне половине гипотенузы, а центр окружности находится в ее середине, на расстоянии, равном длине радиуса.
АО=ОС=50:2=25
----
2) Т.к. радиус описанной вокруг треугольника окружности 6,5, то хорда АВ - диаметр, а угол С, опирающийся на эту хорду, - прямой.
Треугольник АВС - прямоугольный. Площадь прямоугольного треугольника равна половине произведения его катетов.
Один катет дан, он равен 5. Гипотенуза АВ=13. Этот треугольник имеет отношение сторон из Пифагоровых троек (5:12:13). Следовательно, СВ=12
Это можно проверить по т. Пифагора.
S (АВС)=12*5:2=30