0}\atop{x+1>0}} \right.\\\\\left \{{{x>4}\atop {x>-1}}\right.\\x\in(4;+\infty)" alt="5^{x+1}+5^{x-1}-5^x=525\\5^x(5+5^{-1}-1)=525\\5^x*4,2=525\\5^x=60\\x=log_560\\x=log_5(5*12)\\x=log_55+log_512\\x=1+log_512\\\\\\log_6(x-4)+log_6(x+1)=2\\\left\{ {{x-4>0}\atop{x+1>0}} \right.\\\\\left \{{{x>4}\atop {x>-1}}\right.\\x\in(4;+\infty)" align="absmiddle" class="latex-formula">
4\\\\x=8" alt="log_6(x-4)(x+1)=2\\log_6(x-4)(x+1)=log_636\\x^2-3x-4=36\\x^2-3x-40=0\\D=9-4*1*(-40)=9+160=169=13^2\\x_1=(3+13)/2=8\\x_2=(3-13)/2=-5\\x>4\\\\x=8" align="absmiddle" class="latex-formula">
Ответ: 8
Ответ: 3;-1
*** Во 2) ошибка в записи задания.