Решение:a[1]=-10, d=3
Общий член арифметической прогресии равен:
a[n]=a[1]+(n-1)*d
a[n]=-10+3*(n-1)=3n-3-10=3n-13
Сумма первых n членоварифметической прогресии равна
S[n]=(a[1]+a[n])\2 *n
S[n]=(-10+3n-13)\2* n=(3n-23)n\2
S[n]>=0
(3n-23)n\2>=0
n=0
3n-23=0 n=23\3
__+_____0___-____23\3__+__________
левая часть неравенства по свойствам квадратической функции положитнльна для вещественных n<=0 или n>=23\3
учитывая, что n - натуральное, окончательно получим что сумма первых членов больше 0, начиная с номера n=8
(7=21\3<23\3<24\3=8)</p>
Ответ: n=8