1) ученик показал друзьям арифметический фокус. "Задумайте двузначное число; прибавьте к...

0 голосов
206 просмотров

1) ученик показал друзьям арифметический фокус. "Задумайте двузначное число; прибавьте к нему это же число, но записанное в обратном порядке; полученный результат разделите на сумму цифр задуманного числа. У вас получилось 11." как ученик узнал результат?

2) докажите, что при любом n принадлежит N (натуральные числа) значение данного выражения является целым числом

(10^n+317)/3

(10^n-1)/9

интересует как это доказывать


Алгебра (23 баллов) | 206 просмотров
Дано ответов: 2
0 голосов

1) Обозначим первую цифру задуманного числа х, а вторую - у. Выполнив указанные действия, получим:

\frac{10x+y+10y+x}{x+y} = \frac{11x+11y}{x+y} = \frac{11(x+y)}{x+y} = 11

Т.е., всегда будет получаться 11.

2) Признак делимости на 3: на три делятся те числа, сумма цифр которых делится на 3.

Данное число (10^n+317) будет состоять из единицы, n нулей, тройки, единицы и семёрки. Сумма цифр равна 1+3+1+7 = 12.

12 делится на 3, значит, и число 10^n+317 тоже делится на 3, ЧТД

Аналогично, признак делимости на 9: на 9 делятся те числа, сумма цифр которых делится на 9.

10^n состоит из единицы и n нулей. Если от него отнять 1, оно будет состоять из девяток. Соответсвенно, сумма цифр этого числа поделится на 9, ЧТД. 

(14.1k баллов)
0 голосов

1)Первая цифра числа - а

Вторая цифра числа - в

Задуманное число - ав=10а+в

Обратное число - ва=10в+а

Сумма цифр задум. числа - а+в

 

Решение:

10а+в+10в+а=   11а+11в11(а+в)=  11

       а+в=             а+в=       а+в=

Ответ:11.

(4.6k баллов)