Интеграл берется двукратным последовательным интегрированием по частям. 1-раз u(x)=e^cx; dv=(cosωx)dx;
2-й раз u1(x)=(c/ω)*e^cx;dv=(sinωx)dx;
с последующим упрощением выражения ( приведение подобных членов).
Определенный интеграл вычисляется из неопределенного путем вычитания
его значения при нижней границе из значения при верхней границе интегрирования.
Ответ в общем виде таков:
После подстановки конкретных значений "с" и "омега", имеем:
(4/65)* e^((4/7)*pi)+(7/65)*e^((2/7)*pi) = 0,63475