![\frac{1+cos(2x+\pi/6)}{(1+\sqrt3)cosx-(\sqrt3-1)sinx}=\frac{2cos^2(x+\pi/12)}{(sinx+cosx)-\sqrt3(sinx-cosx)}= \frac{1+cos(2x+\pi/6)}{(1+\sqrt3)cosx-(\sqrt3-1)sinx}=\frac{2cos^2(x+\pi/12)}{(sinx+cosx)-\sqrt3(sinx-cosx)}=](https://tex.z-dn.net/?f=%5Cfrac%7B1%2Bcos%282x%2B%5Cpi%2F6%29%7D%7B%281%2B%5Csqrt3%29cosx-%28%5Csqrt3-1%29sinx%7D%3D%5Cfrac%7B2cos%5E2%28x%2B%5Cpi%2F12%29%7D%7B%28sinx%2Bcosx%29-%5Csqrt3%28sinx-cosx%29%7D%3D)
![=\frac{2cos^2(x+\pi/12)}{\sqrt2sin(x+\pi/4)+\sqrt6cos(x+\pi/4)}=\frac{2cos^2(x+\pi/12)}{2\sqrt2sin(x+\pi/4+\pi/3)}= =\frac{2cos^2(x+\pi/12)}{\sqrt2sin(x+\pi/4)+\sqrt6cos(x+\pi/4)}=\frac{2cos^2(x+\pi/12)}{2\sqrt2sin(x+\pi/4+\pi/3)}=](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2cos%5E2%28x%2B%5Cpi%2F12%29%7D%7B%5Csqrt2sin%28x%2B%5Cpi%2F4%29%2B%5Csqrt6cos%28x%2B%5Cpi%2F4%29%7D%3D%5Cfrac%7B2cos%5E2%28x%2B%5Cpi%2F12%29%7D%7B2%5Csqrt2sin%28x%2B%5Cpi%2F4%2B%5Cpi%2F3%29%7D%3D)
![=\frac{cos^2(x+\pi/12)}{\sqrt2cos(x+\pi/12)}=\frac{\sqrt2cos(x+\pi/12)}{2}. =\frac{cos^2(x+\pi/12)}{\sqrt2cos(x+\pi/12)}=\frac{\sqrt2cos(x+\pi/12)}{2}.](https://tex.z-dn.net/?f=%3D%5Cfrac%7Bcos%5E2%28x%2B%5Cpi%2F12%29%7D%7B%5Csqrt2cos%28x%2B%5Cpi%2F12%29%7D%3D%5Cfrac%7B%5Csqrt2cos%28x%2B%5Cpi%2F12%29%7D%7B2%7D.)
Данное выражение равно 0, когда:cos(x+П/12)=0, или х = 5П/12 + Пк.
2.Из условия:
b1 = a1
b2 = a1 + 3d,
b3 = a1+4d
С другой стороны: b2 = b1q, b3 = b1q^2. Получим следующую систему:
a1+3d = a1q, a1(q-1) = 3d
a1+4d = a1q^2 a1(q^2 -1) = 4d Делим второе уравнение на первое:
q+1 = 4/3 или q = 1/3.
Ответ: 1/3.
3. Пусть t = кор(-х)
![\frac{169-t^2}{13+t}=13-t=13-\sqrt{-x} \frac{169-t^2}{13+t}=13-t=13-\sqrt{-x}](https://tex.z-dn.net/?f=%5Cfrac%7B169-t%5E2%7D%7B13%2Bt%7D%3D13-t%3D13-%5Csqrt%7B-x%7D)