Нужно найти периметр прямоугольной трапеции описанной около окружности. Одна сторона трапеции больше второй на 6 см а радиус равен 4 см.
Итак,
АВ=8см, CD=8+6=14см (дано). По свойству окружности, вписанной в трапецию ("если в трапецию вписана окружность радиусом r и она делит боковую сторону точкой касания на два отрезка — a и b, то r=√a*b"), r = √CE*ED. Тогда
ОЕ² = СЕ*ЕD. Итак, имеем: 16=СЕ*ЕD (1), СЕ+ED=14 (2). Подставляя значение ED из (2) в (1) получаем:
СЕ²-14СE-16=0, а решая это квадратное уравнение, находим СЕ = 7-√33см, а ED = 7+√33см. Тогда ВС=4+СЕ, а AD=4+ED (так как СК=СЕ, а FD = DE как касательные к окружности из одной точки).
Отсюда периметр трапеции равен
8+4+(7-√33)+14+4+(7+√33) = 44см.
Ответ: периметр трапеции равен 44см.