123 Балла!Точки O и C расположены в разных полуплощадях относительно прямой АВ. Известно,...

0 голосов
173 просмотров

123 Балла!

Точки O и C расположены в разных полуплощадях относительно прямой АВ. Известно, что АО = ОВ и АОВ = 2(180-АСВ). Докажите, что точки А В С лежат на окружности с центром О


Геометрия (510 баллов) | 173 просмотров
0

если как-то по понятнее написать, то может я решу

0

Как? на русском?

0

Точки O і C расположены в разных полуплощадях относительно прямой АВ. Известно, что АО = ОВ и АОВ = 2(180-АСВ). Докажите, что точки А В С лежат наокружности с центром О

Дан 1 ответ
0 голосов
Правильный ответ

Построим окружность с центром О. Т.к. Окружность -это геометрическое место точек, равноудаленных от центра, а по условию ОА=ОВ, значит точки А и В лежат на окружности, ОА и ОВ являются радиусами, АВ -хорда. Угол АОВ, образованный двумя радиусами, -центральный и равен 2(180-АСВ). Т.к. Точки О и С в разных полуплоскостях относительно АВ, то предположим, что С тоже лежит на окружности. Тогда угол АСВ является вписанным углом (вершина С-лежит на окружности, стороны СА и СВ пересекают окружность), опирающимся на дугу АВ. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит дуга АСВ равна 2(180-АСВ), тогда дуга АВ будет равна 360-2(180-АСВ)=2АСВ. Величина вписанного угла АСВ должна быть в два раза меньше центрального угла, опирающегося на ту же дугу АВ, проверяем угол АСВ=2АСВ/2=АСВ. Равенство верное, значит точка С тоже лежит на этой окружности, что и требовалось доказать.

(101k баллов)