Две плоскости параллельны между собой. Из точки М, не лежащей ни в одной из этих...

0 голосов
1.3k просмотров

Две плоскости параллельны между собой. Из точки М, не лежащей ни в одной из этих плоскостей, ни между плоскостями, проведены две прямые, пересекающие эти плоскости соответственно в точках А1 и А2, В1 и В2. Известно, что МА1= 4 см, B1B2 = 9 см, A1A2 = МВ2. Найдите МА2 и МВ2


Геометрия (20 баллов) | 1.3k просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Уже встречалась эта задача. И решала я ее не так давно. 

Задача на подобие треугольников и теоремы о параллельных плоскостях и прямых. 
Проведем через точку МА2  и В2 плоскость.

 А1В1 параллельна А2В2 как линии пересечения параллельных плоскостей третьей плоскостью. 
Остюда треугольники МА2В2 и МА1В1 подобны. 
Примем отрезок МВ1 за х
Тогда МВ2=9+х,
МА2=9+х+4
4:(13+х)=х:(9+х) 
36+4х=13х+х² 
х²+9х-36=0
При необходимости полное решение квадратного уравнения запишете самостоятельно, а корни его 3 и -12. Второй корень не подходит. 
х=3 см
МВ2=9+3=12 см
МА2=12+4=16 см

(228k баллов)