Прямая DE параллельна AC треугольника ABC, отсекает от него треугольник DBE, стороны...

0 голосов
169 просмотров

Прямая DE параллельна AC треугольника ABC, отсекает от него треугольник DBE, стороны которого в четыре раза меньше сторон данного треугольника. Найдите площадь ABC, если площадь трапеции равна 30


Геометрия (14 баллов) | 169 просмотров
Дан 1 ответ
0 голосов

Вообще просто. Так как известно что стороны в четыре раза меньше - тогда получается, что отсечен подобный треугольник с коэффициентом подобия = 1/4. А есть такое замечательное свойство, что высота у подобных треугольников отличается на коэффициент подобия. А так как искомая величина - площадь = основание*высоту/2 то при перемножении коэффициент подобия перемножится и составит 1/16. Таким образом, площадь маленького отсеченного треугольника составит 1/16 от большого. Трапеция при этом - оставшаяся часть = 15/16=30. Отсюда следует, что 1/16 = 2.

(1.8k баллов)